The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells
نویسندگان
چکیده
Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and α-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases (PKCθ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of 500 µM EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-β-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.
منابع مشابه
بررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلولهای ماهیچهای رده C2C12
Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...
متن کاملRethinking the regulation of l-carnitine transport in skeletal muscle cells. Focus on "Multiple AMPK activators inhibit l-carnitine uptake in C2C12 skeletal muscle myotubes".
CARNITINE IS A CRITICAL COFACTOR in the metabolism of lipids and therefore in the production of cellular energy. L-Carnitine, the active form, plays an important role in oxidizing fatty acids, transporting long chain fatty acids across mitochondrial membrane, and modulating intracellular coenzyme A homeostasis (3). L-Carnitine uptake into cells is mediated primarily by the organic cation/carnit...
متن کاملCiliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity
OBJECTIVE Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mic...
متن کاملActivation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal mus...
متن کاملاثر ضددیابتی عصاره زردچوبه از مسیر سلولی غیروابسته به انسولین AMPK
Introduction: Blood glucose is high in diabetic patients. It is taken from blood by two separate pathways: Insulin-dependent pathway of phosphoinositide 3 kinase (PI3K) and insulin-independent pathway AMPK (AMP-Activated protein kinase). The first pathway is impaired in type 2 diabetic patients, but the second pathway is active. On the other hand, curcuma longa extract containing a high percent...
متن کامل